48 research outputs found

    Efficient Computation of Morphological Greyscale Reconstruction

    Get PDF
    Morphological reconstruction is an important image operator from mathematical morphology. It is very often used for filtering, segmentation, and feature extraction. However, its computation can be very time-consuming for some input data. In this paper we review several efficient algorithms to compute the reconstruction, and compare their performance on real 3D images of large sizes. Furthermore, we propose a GPU implementation which performs up to 15x faster than the CPU methods. To our best knowledge, this is the first GPU implementation of the morphological reconstruction, described in literature

    Algorithms for Efficient Computation of Convolution

    Get PDF

    Successful Peripheral Blood Stem Cells Collection in Imatinib Pretreated and Nilotinib-Treated Chronic Myeloid Leukemia Patient

    Get PDF
    We report a case of a successful mobilization and harvest of the peripheral blood stem cells (PBSCs) in imatinib-pretreated and nilotinib treated 52-year-old woman diagnosed with Philadelphia chromosome-positive and BCR-ABL (b2a2) positive chronic phase CML in 2/2002. She failed interferon-alfa and imatinib treatment. She achieved her first complete molecular remission after 16 months of nilotinib treatment and later on was mobilized with filgrastim at a dose of 10 ug/kg/day applied subcutaneously once daily. The total number of 2.98 × 106 CD34+ cells/kg was harvested on the fourth day of the mobilization. The autologous graft of the stem cells was cryopreserved and tested for the residual disease: the FISH revealed negative results and the RT-PCR was positive (BCR-ABL/ABL ratio 0,0017 in RQ-PCR). To our knowledge, this is the first report of successful PBSC harvest in a patient significantly pretreated with imatinib and nilotinib

    DISTINGUISHING BETWEEN SPOT AND TORUS MODELS OF HIGH-FREQUENCY QUASIPERIODIC OSCILLATIONS

    Get PDF
    In the context of high-frequency quasi-periodic oscillation (HF QPOs) we further explore the appearance of an observable signal generated by hot spots moving along quasi-elliptic trajectories close to the innermost stable circular orbit in the Schwarzschild spacetime. The aim of our investigation is to reveal whether observable characteristics of the Fourier power-spectral density can help us to distinguish between the two competing models, namely, the idea of bright spots orbiting on the surface of an accretion torus versus the scenario of intrinsic oscillations of the torus itself. We take the capabilities of the present observatories (represented by the Rossi X-ray Timing Explorer, RXTE) into account, and we also consider the proposed future instruments (represented here by the Large Observatory for X-ray Timing, LOFT)

    Investigation and optimization of parameters affecting the multiply charged ion yield in AP-MALDI MS

    Get PDF
    Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption in the AP-tovacuum inlet. Both high temperature and a flow regime with increased residence time of the desorbed plume in the desolvation region promote the generation of multiply charged ions. Without such measures the application of an electric ion extraction field significantly increases the ion signal intensity of singly charged species while the detection of multiply charged species is less dependent on the extraction field. In general, optimization of high temperature application facilitates the predominant formation and detection of multiply charged compared to singly charged ion species. In this study an experimental setup and optimization strategy is described for liquid AP-MALDI MS which improves the ionization effi- ciency of selected ion species up to 14 times. In combination with ion mobility separation, the method allows the detection of multiply charged peptide and protein ions for analyte solution concentrations as low as 2 fmol/lL (0.5 lL, i.e. 1 fmol, deposited on the target) with very low sample consumption in the low nL-range

    On mass-constraints implied by the relativistic precession model of twin-peak quasi-periodic oscillations in Circinus X-1

    Full text link
    Boutloukos et al. (2006) discovered twin-peak quasi-periodic oscillations (QPOs) in 11 observations of the peculiar Z-source Circinus X-1. Among several other conjunctions the authors briefly discussed the related estimate of the compact object mass following from the geodesic relativistic precession model for kHz QPOs. Neglecting the neutron star rotation they reported the inferred mass M_0 = 2.2 +/- 0.3 M_\sun. We present a more detailed analysis of the estimate which involves the frame-dragging effects associated with rotating spacetimes. For a free mass we find acceptable fits of the model to data for (any) small dimensionless compact object angular momentum j=cJ/GM^2. Moreover, quality of the fit tends to increase very gently with rising j. Good fits are reached when M ~ M_0[1+0.55(j+j^2)]. It is therefore impossible to estimate the mass without the independent knowledge of the angular momentum and vice versa. Considering j up to 0.3 the range of the feasible values of mass extends up to 3M_\sun. We suggest that similar increase of estimated mass due to rotational effects can be relevant for several other sources.Comment: 10 pages, 9 figures (in colour

    Protein identification using a nanoUHPLC-AP-MALDI MS/MS workflow with CID of multiply charged proteolytic peptides

    Get PDF
    Liquid AP-MALDI can produce predominantly multiply charged ESI-like ions and stable durable analyte ion yields with samples allowing good shot-to-shot reproducibility and exhibiting self-healing properties during laser irradiation. In this study, LC-MALDI MS/MS workflows that utilize multiply charged ions are reported for the first time and compared with standard LC-ESI MS/MS for bottom-up proteomic analysis. The proposed method is compatible with trifluoroacetic acid as an LC ion pairing reagent and allows multiple MS/MS acquisitions of the LC-separated samples without substantial sample consumption. In addition, the method facilitates the storage of fully spotted MALDI target plates for months without significant sample degradation

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG
    corecore